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Course Outline

▪ Computation: Python and Tables

▪ Exploration
• Discover patterns in data

• Articulate insights (visualizations)

▪ Inference
• Make reliable conclusions about the world

• Probability & Statistics

▪ Prediction
• Informed guesses about unseen data

• Machine Learning: Regression & Classification
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Computation in Python

Textbook sections

▪ General features and Table methods: 3.1 - 9.3, 17.3

▪ sample_proportions: 11.1

▪ percentile: 13.1

▪ np.average, np.mean, np.std: 14.1, 14.2

▪ minimize: 15.4
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Exploring Data

Copyright © 2016 Barnard College



Describing Data

▪ Qualitative:

• Visualizing Distributions: Chapter 7

▪ Quantitative

• Center and spread: 14.1-14.3

• Linear trend and non-linear patterns: 8.1, Chapter 15
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Measures of Center

Median

▪ 50th percentile, where

▪ pth percentile = smallest value on list that is at least as large as p% 
of the values 13.1

▪ Median is not affected by outliers

Mean/Average

▪ Depends on all the values

▪ smoothing operation

▪ center of gravity of histogram

• if histogram is skewed, mean is pulled away from median towards the tail
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▪ Standard deviation (SD) measures roughly 
how far the data are from their average 

▪ SD = root mean square of deviations from average 

Measure of Spread
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Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 

average ± 3 SDs at least 1 - 1/9 (88.888...%) 

average ± 4 SDs at least 1 - 1/16 (93.75%) 

average ± 5 SDs at least 1 - 1/25 (96%) 
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True no matter what the distribution looks like



Bounds and Normal Approximations

Percent in 
Range

All 
Distributions

Normal 
Distributions

Average
+- 1 SD

At least 0% About 68%

Average 
+- 2 SDs

At least 75% About 95%

Average
+- 3 SDs

At least 
88.888…%

About 99.73%
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Standard Units Z

“average ± SDs” 14.2

▪ z measures “how many SDs above average”

▪ Almost all standard units are in the range (-5, 5)

▪ To convert a value to standard units:

value - average

z = ---------------------

SD
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The Correlation Coefficient r

▪ Measures linear association

▪ Based on standard units; pure number with no units

▪ r is not affected by changing units of measurement

▪ -1 ≤ r ≤ 1

▪ r = 0: No linear association; uncorrelated

▪ r is not affected by switching the horizontal and vertical axes

▪ Be careful before you use it

▪ 15.1
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Definition of r

Correlation Coefficient (r) =

average of product of standard(x) and standard(y)

Measures how clustered the scattered data are around a 
straight line

estimate of y = r · x, when both variables are measured 
in standard units
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Slope and Intercept

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑦 = 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑥 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝒔𝒍𝒐𝒑𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝒍𝒊𝒏𝒆

𝑟 ∗
𝑆𝐷 𝑜𝑓 𝑦

𝑆𝐷 𝑜𝑓 𝑥

𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒐𝒇 𝒕𝒉𝒆 𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝒍𝒊𝒏𝒆
𝑚𝑒𝑎𝑛 𝑦 − 𝑠𝑙𝑜𝑝𝑒 × 𝑚𝑒𝑎𝑛(𝑥)

24



Regression Line

▪ Regression line is the “least squares” line

▪ Minimizes the root mean squared error of prediction, among all 
possible lines

▪ No matter what the shape of the scatter plot, there is one best 
straight line

• but you shouldn’t use it if the scatter isn’t linear

▪ 15.3, 15.4
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Residuals

▪ Error in regression estimate

▪ One residual corresponding to each point (x, y)

▪ residual 

= observed y - regression estimate of y

= vertical difference between point and line

▪ No matter what the shape of the scatter plot:

• Residual plot does not show a trend

• Average of residuals = 0
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Inference
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General Concepts

▪ Study, experiment, treatment, control, confounding, 
randomization, causation, association: Chapter 2

▪ Distribution: 7.1, 7.2

▪ Sampling, probability sample: 10.0

▪ Probability distribution, empirical distribution, law of averages: 
Chapter 10

▪ Population, sample, parameter, statistic, estimate: 10.1, 10.3

▪ Model: every null and alternative hypothesis; 16.1
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Goal of Inference

▪ To make conclusions about unknown features of the population 
or model, based on assumptions of randomness
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Probability

▪ Probability theory:

• Exact calculations

• Normal approximation for mean of large random sample

• Accuracy and sample size
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Equally Likely Outcomes

Assuming all outcomes are equally likely, the 
chance of an event A is:

P(A)  =
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𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒖𝒕𝒄𝒐𝒎𝒆𝒔 𝒕𝒉𝒂𝒕𝒎𝒂𝒌𝒆 𝑨 𝒉𝒂𝒑𝒑𝒆𝒏

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒖𝒕𝒄𝒐𝒎𝒆𝒔



Large Sample Approximation: CLT

Central Limit Theorem

If the sample is

▪ large, and

▪ drawn at random with replacement,

Then, regardless of the distribution of the population,

the probability distribution of the sample sum (or of the sample 
mean) is roughly bell-shaped
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Inference: Estimation
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Estimating a Numerical Parameter

▪ Question: What is the value of the parameter?

▪ Terms: predict, estimate, construct a confidence interval, 
confidence level

▪ Answer: Between x and y, with 95% confidence

▪ Method (13.2, 13.3):

• Bootstrap the sample; compute estimate

• Repeat; draw empirical histogram of estimates

• Confidence interval is “middle 95%” of estimates

▪ Can replace 95% by other confidence level (not 100%)
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Meaning of “95% Confidence”

▪ You’ll never get to know whether or not your constructed 
interval contains the parameter.

▪ The confidence is in the process that generates the interval.

▪ The process generates a good interval (one that contains the 
parameter) about 95% of the time.

▪ End of 13.2
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Reasons to use a confidence interval

▪ To estimate a numerical parameter: 13.3

• Regression prediction, if regression model holds: Predict y based on 
a new x: 16.3

▪ To test whether or not a numerical parameter is equal to a 
specified value: 13.4

• In the regression model, used for testing whether the slope of the true 
line is 0: 16.2
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Inference: Testing
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Testing Hypotheses

▪ Null: A completely specified chance model, under which you can 
simulate date. 
• Need to say exactly what is due to chance, and what the hypothesis 

specifies.

▪ Alternative: The null isn’t true
• something other than chance is going on; might have a direction

▪ Test Statistic: A statistic that helps decide between the two 
hypotheses, based on its empirical distribution under the null

▪ 11.3
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The P-value

▪ The chance, under the null hypothesis, that the test statistic 
comes out equal to the one in the sample or more in the 
direction of the alternative

▪ If this chance is small, then:

• If the null is true, something very unlikely has happened.

• Conclude that the data support the alternative hypothesis more than 
they support the null.

▪ 11.3
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Error Probability 

▪ Even if the null is true, your random sample might indicate the 
alternative, just by chance

▪ The cutoff for P is the chance that your test makes the wrong 
conclusion when the null hypothesis is true

▪ Using a small cutoff limits the probability of this kind of error

▪ 11.4
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Testing Data in Two Categories

▪ Null: The sample was drawn at random from a specified 
distribution.

▪ Test statistic: Either count/proportion in one category, or 
distance between count/proportion and what you’d expect 
under the null; depends on alternative

▪ Method:

• Simulation: Generate samples from the distribution specified in the 
null.

▪ 11.1 (Swain v. Alabama, Mendel)
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Testing Data in Multiple Categories

▪ Null: The sample was drawn at random from a specified 
distribution.

▪ Test statistic: TVD between distribution in sample and 
distribution specified in the null.

▪ Method:

• Simulation: Generate samples from the distribution specified in the 
null.

▪ 1.2 (Alameda county juries)
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Comparing Two Numerical Samples

▪ Null: The two samples come from the same underlying 
distribution in the population.

▪ Test statistic: difference between sample means (take absolute 
value depending on alternative)

▪ Method for A/B Testing:

• Permutation under the null: 12.2 (Deflategate), 12.1 (birth weight etc
for smokers/nonsmokers), 12.3 (BTA randomized controlled trial)
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One Numerical Parameter

▪ Null: parameter = a specified value.

▪ Alternative: parameter ≠ value

▪ Test Statistic: Statistic that estimates the parameter

▪ Method:

• Bootstrap: Construct a confidence interval and see if the specified 
value is in the interval.

▪ 13.4, 16.2 (slope of true line)
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Causality

▪ Tests of hypotheses can help decide that a difference is not 
due to chance

▪ But they don’t say why there is a difference …

▪ Unless the data are from an RCT 12.3

• In that case a difference that’s not due to chance can be ascribed to 
the treatment

45



Prediction
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Regression

▪ Regression model 16.1

▪ Bootstrap confidence interval for the true slope 16.2

• Use of this interval to test if the true slope is 0

▪ Bootstrap prediction interval for y at a given value of x 16.3
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Classification

▪ Binary classification based on attributes 17.1
• k-nearest neighbor classifiers

▪ Training and test sets 17.2
• Why these are needed

• How to generate them

▪ Implementation: 17.4
• Distance between two points

• Class of the majority of the k nearest neighbors

▪ Accuracy: Proportion of test set correctly classified 17.5
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Data Science
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Why Data Science

▪ Unprecedented access to data means that we can make new 
discoveries and more informed decisions

▪ Computation is a powerful ally in data processing, visualization, 
prediction, and statistical inference 

▪ People can agree on evidence and measurement 

▪ Data and computation are everywhere: understanding and 
interpreting are more important than ever 
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Limitations of Data Science

▪ Evidence and measurements are critical ingredients for good 
decision-making 

• ...but they’re not enough by themselves!

▪ Data science is a powerful complement to qualitative analysis

• but it’s not a replacement! 
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How to Analyze Data

▪ Begin with a question from some domain, make reasonable 
assumptions about the data and a choice of methods. 

▪ Visualize, then quantify! 

▪ Perhaps the most important part: Interpretation of the results in 
the language of the domain, without statistical jargon. 
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How Not to Analyze Data

▪ Begin with a question from some domain, make reasonable 
assumptions about the data and a choice of methods. 

▪ Visualize, then quantify! 

▪ Perhaps the most important part: Interpretation of the results in 
the language of the domain, without statistical jargon. 
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How to Analyze Data after Data Science 100

54

▪ Begin with a question from some domain, make 
reasonable assumptions about the data and a 
choice of methods. 

▪ Visualize, then quantify! Do both using 
computation

▪ Perhaps the most important part: Interpretation 
of the results in the language of the domain, 
without statistical jargon. 



Data Science 100 – Analyzing Data with Computation

▪ Table manipulation using Python 

▪ Working with whole distributions, not just means

▪ Decisions based on sampling: assessing models

▪ Estimation based on resampling 

▪ Understanding sampling variability 

▪ Prediction 
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Continuing in data science

Math courses:
Linear Algebra
Probability & Statistics (Math H218)

Computer Science Courses
Data Structures
Discrete Math
Algorithms



Thank you!
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