DS 100 – Intro to Data Science

Lecture 21 – Linear Regression, Residuals, Least Squares 04/08/2025 Adam Poliak

Announcements

Midsemester feedback form - https://forms.gle/M4jVdGTDgQknWAwo6

Lab 08 (due Friday April 11th)

HW07 (due Wednesday April 9th), HW08 (due Wednesday April 16th)

Project 2 (due Friday April 11th)

No class: 04/10, 04/15, 04/17

Project 2 (due Monday April 14th)

Project 3 (due Friday May 2nd)

Prediction

Guess the future

Based on incomplete information

One way of making predictions:

- To predict an outcome for an individual,
- find others who are like that individual
- and whose outcomes you know.
- Use those outcomes as the basis of your prediction.

Galton's Heights

5

Goal: Predict the height of a new child, based on that child's midparent height

Galton's Heights

6

How can we predict a child's height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches

Galton's Heights

How can we predict a child's height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches

Predicted Heights

Correlation

The Correlation Coefficient r

Measures linear association

Based on standard units

 $-1 \leq r \leq 1$

- r = 1: scatter is perfect straight line sloping up
- *r* = -1: scatter is perfect straight line sloping down
- *r* = 0: No linear association; *uncorrelated*

Definition of *r*

Correlation Coefficient (r) =

average of product of standard(x) and standard(y)

Steps:4321Measures how clustered the scattered data are around a straight line

Predicted Heights

Graph of Averages

For each x value, the prediction is the average of the y values in its nearby group.

The graph of these predictions is the graph of averages

If the association between x and y is linear, then points in the graph of averages tend to fall on a line.

The line is called the **regression line**

Linear Regression

Linear Regression

A statement about x and y pairs

- Measured in standard units
- Describing the deviation of x from 0 (the average of x's)
- And the deviation of y from 0 (the average of y's)

$$y_{su} = r \times x_{su}$$

Slope and Intercept

Regression Line Equation

$$y_{su} = r \times x_{su}$$

In original units, the regression line has this equation:

$$\frac{estimate \ of \ y \ -mean(y)}{SD \ of \ y} = r \ \times \ \frac{given \ x \ -mean(x)}{SD \ of \ x}$$

Lines can be expressed by *slope* & *intercept* $y = slope \times x + intercept$

Regression Line

Standard Units

18

Original Units

Slope and Intercept

estimate of y = slope * x + intercept **slope of the regression line** $r * \frac{SD \ of \ y}{SD \ of \ x}$

intercept of the regression line

 $mean(y) - slope \times mean(x)$

Prediction with Linear Regression

Goal: Predict y using x

Examples: Predict *# hospital beds available* using *air pollution*

Predict *house prices* using *house size*

Predict # app users using # app downloads

Regression Estimate

Goal: Predict y using x

To find the regression estimate oy y:

Convert the given x to standard units

Multiply by *r*

That's the regression estimate of y, but:

• It's in standard units

Regression Line Estimate

In original units, the regression line has this equation:

$$y_{su} = r \times x_{su}$$

$$\frac{estimate \ of \ y - mean(y)}{SD \ of \ y} = r \times \frac{given \ x - mean(x)}{SD \ of \ x}$$
Lines can be expressed by slope & intercept
$$y = slope \ \times \ x + intercept$$
What we observe
What we observe

Where is the prediction line?

r = 0.99

Where is the prediction line?

r = 0

Where is the prediction line?

Least Squares

Error in Estimation

error = actual value – estimate

Typically, some errors are positive and some are negative

- To measure the rough size of the errors
 - square the errors to eliminate cancellation
 - Take the **mean** of the squared errors
 - Take the square **root** to fix the units

Root mean square error (rmse)

BRYN MAWR

Least Squares Line

Minimized the root mean squared error among all lines

Equivalently, minimizes the mean squared error among all lines

Names:

- "Best fit" line
- Least squares line
- Regression line

Numerical Optimization

Numerical minimization is approximate but effective

Lots of machine learning uses numerical minimization (demo)

If the function **mse(a, b)** returns the mse of estimation using the line "estimate = ax + b",

- then minimize(mse)returns array [a0, b0]
- a0 is the slope and b0 the intercept of the line that minimizes the mse among lines with arbitrary slope a and arbitrary intercept b (that is, among all lines)

Error in regression estimate

One residual corresponding to each point (x, y)

residual = observed y - regression estimate of y = observed y - height of regression line at x = vertical distance between the point and the best line

- A scatter diagram of residuals
- Should look like an unassociated blob for linear relations
- But will show patterns for non-linear relations
- Used to check whether linear regression is appropriate
- Look for curves, trends, changes in spread, outliers, or any other patterns

Properties of residuals

Residuals from a linear regression always have

- Zero mean
 - (so rmse = SD of residuals)
- Zero correlation with x
- Zero correlation with the fitted values

These are all true **no matter what the data look like**

• Just like deviations from mean are zero on average

